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Morton’s series for fully developed laminar flow through a uniformly heated 
horizontal pipe is simplified by assuming high Prandtl number, and then extended 
by computer to 31 terms in powers of a parameter that is the product of the Prandtl, 
Rayleigh, and Reynolds numbers. As in the analogous problems, treated previously, 
of flow through a loosely coiled pipe and a slowly rotating pipe, convergence is 
limited by a conjugate pair of square-root singularities on the imaginary axis. For the 
global heat flux, an Euler transformation and extraction of the nearest singularity 
a t  infinity yield an approximation in good agreement with existing experiment and 
numerical solution. The Nusselt number is found to grow asymptotically as the &- 
power of the parameter, whereas boundary-layer analyses have suggested a &power. 

1. Introduction 
It is easier to calculate external than internal flows when the viscosity is great, but 

harder when it is small. At a low Reynolds or Rayleigh number R the Stokes 
linearization provides a basis for successive approximations to internal flows ; but i t  
fails for external flows, as exemplified by the paradoxes of Stokes and Whitehead. At 
the other extreme of high R, boundary layers arise in either geometry; but an 
external boundary layer is simpler because it traverses the body only once and 
therefore matches with an outer irrotational flow that be calculated either beforehand 
in a forced stream or subsequently in a free convection. An internal boundary layer, 
on the other hand, recirculates endlessly ; its interaction with the core is therefore so 
intimate that the two matching flows must be calculated simultaneously. 

For internal flow, the two limits of high and low viscosity were first considered 
concurrently by Batchelor (1954), treating free convection in the air space between 
two vertical walls a t  different temperatures. He began by considering what we call 
here the Stokes series - an expansion in powers of the Rayleigh number Ra (his A ) .  
He estimated that the series would provide a good approximation only for Ra less 
than about 1000, which was below his region of interest. Then, after analysing the 
very tall cavity at arbitrary Ra, he turned to the boundary-layer approximation for 
Ra tending to infinity. He reasoned that the core is isothermal with a constant 
vorticity whose value is found by matching with the boundary layer. However, 
various experiments, and several analyses starting with the boundary-layer analysis 
of Gill ( 1966), suggest instead a relatively stagnant core with horizontally stratified 
temperature increasing vertically. This is an example of the fact that recirculating 
internal boundary layers are neither so simple nor so well understood as external 
boundary layers. 

The utility of the Stokes series has been transformed by the advent of the 
computer. Batchelor remarked that only the first few terms of his series could be 
determined numerically without excessive labour ; but now - particularly in simpler 
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geometry - we can compute dozens or even hundreds of terms. From those we can 
estimate accurately the radius of convergence, and then attempt to extend the range 
of utility by analytic continuation. The ultimate achievement is to extract from the 
Stokes series for small R the boundary-layer solution for R tending to infinity. 

We first carried out that  program successfully for the model problem of the drag 
of a sphere in linearized Oseen flow (Van Dyke 1970) ; and we apply i t  now to the heat 
transfer in laminar flow through a heated horizontal pipe. That flow is of practical 
interest because buoyancy induces a secondary motion that may increase the 
laminar heat transfer by more than a factor of five. The motion was first studied as 
a perturbation of the classical solution of Nusselt (1910) for fully developed flow 
through a horizontal pipe by Morton (1959) and independently by Hanratty 
(unpublished ; see Apostolakis 1957). 

Subsequent investigators have turned instead to boundary-layer and finite- 
difference methods, arguing - like Batchelor - that Morton’s perturbation solution is 
accurate only for changes in heat transfer that  are small compared with those of 
practical interest. Our objective here is to remove that limitation by extending the 
series to high order by computer, analysing its coefficients, and recasting it to be 
valid over the entire range of physical interest. 

Trefethen (1957) has observed that the heated pipe provides one of three analogous 
situations in which an additional force superimposes upon rectilinear Poiseuille flow 
a double-spiral secondary motion. The other two are the coiled pipe, first analysed 
as a perturbation of Poiseuille flow by Dean (1928), and the pipe rotating about a 
perpendicular axis, treated in a similar way by Barua (1954). Those two series 
solutions have previously been extended by computer, with controversial results. 

The author (Van Dyke 1978) extended Dean’s four-term series for the loosely 
coiled pipe to 24 terms in powers of what is now known as the Dean number. 
Although he found the result limited by a modest radius of convergence, he claimed 
to have recast i t  to be valid for arbitrarily large Dean number. Indeed, he extracted 
the asymptotic result that  the friction ratio eventually increases as the $power of the 
Dean number. Unfortunately, that conclusion is in disagreement with four separate 
boundary-layer analysis, all of which predict a +-power. Furthermore, the results fall 
eventually well below all existing numerical results and all experiments. 

Similarly, Mansour (1985) expanded the flow through a slowly rotating pipe to 34 
terms in powers of a single combined similarity parameter that  he introduced. 
Recasting the resulting series for the friction ratio, he predicted that it will grow 
asymptotically as the Q-power of his similarity parameter. However, two different 
boundary-layer analyses predict instead a ;-power. 

These discrepancies have naturally cast doubt on the trustworthiness of the 
process, proposed in those two papers, of numerical analytic continuation far beyond 
the original radius of convergence. Furthermore, Hunter (1987) has issued a warning, 
bolstered by model functions, that ‘it may be difficult to make an accurate estimate 
of the unknown limiting behaviour of some function P(R)  as R + co from t,he Euler 
transformed series ’ (the Euler transformation being an essential part of the process). 
These uncertainties discouraged us from completing our analysis of the heated pipe, 
the bulk of which was carried out ten years ago. 

The outlook has changed significantly, however, with the appearance of careful 
new experiments in a coiled pipe by Ramshankar & Sreenivasan (1988). From a 
detailed review of previous experiments, they conclude that none of the existing data 
satisfy the conditions demanded by the computer-extended theory : a disturbance 
level of the incoming flow low enough to maintain laminar flow to relatively high 
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Reynolds numbers, a loose coil whose cross-section radius is less than 0.03 of the 
coiling radius, nearly circular cross-section, adequate length to achieve fully 
developed flow, and values of Dean number greater than 500. Ramshankar & 
Sreenivasan managed to match those requirements reasonably well, and measured 
friction factors that fall below the boundary-layer predictions, and lie close to the t- 
power variation deduced from the computer extension. They concede, however, that 
the ‘paradox ’ is not yet completely resolved satisfactorily, because a discrepancy 
remains with trustworthy finite-difference computations that satisfy precisely the 
conditions for series extension (Collins & Dennis 1975; Dennis 1980; Daskopoulos & 
Lenhoff 1989). Nevertheless, Ramshankar & Sreenivasan’s results for the coiled pipe 
have encouraged us to take up again our interrupted analysis of the analogous 
heated-pipe problem ; and we are delighted to find that, although our results again 
disagree with several approximate boundary-layer analyses, they are in close accord 
with both experimental and finite-difference results. 

2. Reduction of Morton’s problem 
We consider Morton’s problem of fully developed steady laminar flow through a 

horizontal pipe of radius a whose wall is heated uniformly. We neglect dissipation, 
and the pressure term in the energy equation, and variations of density except in the 
buoyancy force, and take the kinematic viscosity v and thermal diffusivity K as 
constants. We introduce cylindrical coordinates ( r ,  9, x )  with x increasing in the 
streamwise direction and q5 measured from the upward vertical. 

We mainly follow Morton’s notation. A constant temperature gradient T is 
maintained in the axial direction; and in full developed flow the pressure has a 
constant (negative) gradient y.  Then the velocity components u, u,  w in the fluid and 
the temperature decrement T X - T  are functions of r and q5 only. The continuity 
equation can be satisfied by introducing a Stokes stream function $ for the crossflow. 
Morton introduces dimensionless variables by referring r to a, u, v, and w to v /a  and 
hence $ to  v, and T X  - T to aPr, where the Prandtl number is Pr = v /K .  The problem 
then depends upon three dimensionless parameters, the Prandtl number Pr, 
Rayleigh number Ra, and Reynolds number Re (Morton’s B, A ,  and B) ,  where 

( -Y)a3 , R e = - .  R a = -  / 3 P 4  
KV 4pv2 

Here /3 is the coefficient of thermal expansion and g the acceleration due to gravity. 
Re is what Woods & Morris (1974) aptly call the pseudo Reynolds number - based on 
the radius and the maximum speed that would be produced by the pressure gradient 
in the absence of heating. 

We modify Morton’s variables in order to  clarify the dependence of the problem 
on the parameters Pr, Ra, and Re. We refer $ to K rather than v ,  multiply Morton’s 
dimensionless temperature difference and axial velocity w by the Reynolds number 
Re, and then subtract the parabolic Poiseuille velocity profile from w and divide the 
remainder by Pr. Thus we express the original dimensional variables in terms of new 
(barred) variables as 

’I @ = K&P, $), r = aF, 

a 

T = rz-TaPrReO(F,q5). ) 
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Then the vorticity equation, axial-momentum equation, and energy equation 
reduce, with the overbars dropped, to 

These correspond to Morton's equations (4), (5), (6); but our modified variables have 
the advantage of showing that the problem depends not upon Pr, Ra,  and Re 
separately, but only upon the Prandtl number Pr and the combination 

This correlation was first observed by Anderson (1970), whose parameter Xi is the 
product of his Grashof, Nusselt, and Prandtl numbers, and equal to half our 8. It has 
been independently rediscovered by Cheng, Hwang & Akiyama (1972) and Woods & 
Morris (1980). 

Finally, we simplify the problem further, reducing the original three parameters to 
this single combination, by neglecting terms multiplied by 1 /Pr .  This approximation 
would seem entirely satisfactory for oil, with Pr of order one thousand, and perhaps 
acceptable even for cool water, with Pr of order five. In fact, however, the effects of 
finite Prandtl number appear to be small and compensatory. This is suggested by 
Morton's second approximation for the Nusselt number Nu : 

1 + (0.0586 - 0.0852Pr + 0.2686Pr2) (m)' Ra Re + . . .] 
Here the error incurred by neglecting all but the highest powers of Pr is less than 
12 % of the correction when Pr is greater than 0.6, which includes gases such as air. 
Thus we seek to solve the simplified equations 

Our approximation of large Prandtl number has rendered the first two equations 
linear, and uncoupled the second from the other two. We can therefore solve for the 
crossflow and temperature fields alone and, if desired, subsequently calculate the 
axial velocity, which according to (2.2) differs from the parabolic Poiseuille profile 
only by small terms of order l / P r .  

The boundary conditions on g and w require that the three components of velocity 
vanish at the wall: 

(2.9) - " ' = % = W = o  at r = 1 .  
ar a$ 
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Two different boundary conditions on temperature are found in the literature. 
Morton (1959) interprets the ‘uniformly heated’ of his title to mean that the wall 
temperature increases linearly downstream, but is constant around the circumference 
at  any station. He argues that ‘pipes will usually have reasonably thick walls of 
material with thermal conductivity much higher than that of the fluid, and so there 
will be little variation in wall temperature round the pipe girth.’ Thus his wall 
temperature is simply 7x, independent of $, and the local heat flux then varies with 
I$, being slightly greater a t  the bottom than the top. Thus his boundary condition is 

8 = 0  at r = l .  (2.10) 

Most subsequent investigators have adopted this condition, which Morcos & Bergles 
(1975) call that of infinite conductivity. 

On the other hand, Anderson interprets ‘ uniformly heated ’ strictly ; the local heat 
flux is taken to  be constant everywhere on the wall, and the temperature of the wall 
then varies with $, being slightly higher at the bottom than the top. Thus his 
boundary condition is that of zero conductivity, 

= const. at r = 1. (2.11) 
ae 
ar 
- 

He takes 72 to be the bulk (mixed-mean, mixing-cup) temperature 

3. Perturbation solution 
Morton (1959) sought an approximation for slight heating by expanding in powers 

of the Rayleigh number Ra,  with the Prandtl and Reynolds numbers as parameters. 
However, he observed that R a  and Re appeared only as a product, so he effectively 
expanded in powers of RaRe,  with coefficients that are polynomials in Pr of 
continually increasing order. Hence he computed (to second order) a double power 
series in R a  Re and Pr. 

Anderson (1970) delegated the mounting algebra to the computer and, for the 
boundary condition (2.1 1) of strictly uniform heat transfer, calculated seven terms 
of the single series in powers of our e (his 2x4). We here extend the computation 
further for both boundary conditions. 

We substitute into our simplified equations (2.8) the expansions 

e = eo+ee1+E2e2+ ..., 
$b = “ $ I , + e 2 ~ 2 + . . . ,  

w = €W,+€2W2+ .... 

Then equating like powers of e gives for B0 the equation 

Integrating and imposing Morton’s condition (2.10) yields 

Oo = &(3-4r2+r4) .  

(3.1) 

(3.3) 

On the other hand, Anderson requires that the bulk temperature be the basic rx ,  so 
the average over the cross-section of this increment, weighted by the parabolic 
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Poiseuille velocity, must vanish. This lowers the constant of integration, giving 
instead 8, = &(s;(3-4r2+r4). (3.4) 
Either of these is the classical result of Nusselt (1910) for flow in the absence of 
buoyancy. It gives the value --i for the constant in Anderson's boundary condition 
(2.11), and all higher-order terms must satisfy a8,/ar = 0 a t  the walls. Then the 
equations for $l and w1 are readily integrated to give 

(3.5) I (rl = -&gr(i-r2)2(iO-r2)sin$, 
w1 = -__ Ist320r(1 - r 2 )  (49-51r2+ 19r4-r6) C O S ~ .  

We shall consider the axial velocity no further, because it differs from the Poiseuille 
flow by only terms of order l /Pr.  

In the second cycle, the differential equation for O1 is 

V28, = &r(20-52r2+45r4- 14r6+r8)cos$. (3.6) 

(3.7) 
whereas for Anderson's condition (2.11) of zero conductivity, the first coefficient 265 
is replaced by 419. Then under either condition the equation for $2 is integrated to 

For Morton's boundary condition of infinite conductivity, the solution is 

/ 3 = -  4423680r(265 1 - 600r2 + 520r4 - 225r6 + 42r8 - 2r10) cos $, 1 

give 
$, = 2800~~60s)2r2(1  - r 2 ) ,  (10518-4614r2+ 1254r4- 158r6+5r8) sin2q5. (3.8) 

In the third cycle, integrating the equation for 8, for infinite conductivity gives 

8, = 14 ,oo~4608)5[ ( - 9070 460 + 46 746 000r2 - 102 003 300r4 + 123 362 400r6 
-91000350r8+42283080r10- 12 l18680r12+ 1 942920r14 
- 145 530r16 + 3920r18) + (7 594 290r2 - 23 762 088r4 + 32 275 404r' 
-25016040r8+ 11 779110r10-3383856r'2+552573r14-40464r16 
+ 1O71rl8) cos 2951. 13.9) 

For zero conductivity, the first five coefficients inside the first parentheses are 
replaced by - 130075498/11, 73911600, -130527 180, 134228640, and 
-91679490, and the first four coefficients in the second parenthesis by - 7  140276, 
-476 168, 24 125724, and -24472728. All these results for Morton's boundary 
condition agree with those of Morton himself except for the last coefficient in (3.7), 
the first two in the second parenthesis in (3.9), and the sign of the sixth; but our 
results are confirmed by the later calculations of Iqbal & Stachiewicz (1966). 

We want to analyse a global quantity of practical interest. Morton considers both 
the volume flux and the heat flux. However, the axial velocity is unaltered by 
buoyancy in our approximation of high Prandtl number. We therefore examine 
henceforth the global heat flux, as given by the Nusselt number Nu. 

The Nusselt number is by definition proportional to the heat flux into the fluid - 
which is also unaltered by buoyancy in our analysis - and inversely proportional to 
the difference between the mean temperatures of the wall and of the fluid. In  
Morton's problem the wall temperature is rx, so Nu is proportional to the average 
across the pipe of the temperature difference 8. If the unweighted mean is used, 
integrating (3.3) gives the classical value Nu, = 6. Then the ratio of this to the 
Nusselt number including buoyancy is given by 

8 r d $ d r =  1----- ~ 

268800 4608 
72143 ( y +  .... (3.10) 
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This agrees with Morton’s result (2.7) for large Prandtl number. 
To compare with experiment, however, one must use the bulk temperature - the 

average weighted with respect to the axial velocity (Goldstein 1938, p. 618). Using 
the parabolic velocity profile gives Nuo = in the classical case, and with the 
inclusion of buoyancy, 

This agrees with the large-Pr limit of equation (4) of Mori et al. (1966) and equation 
(36) of Iqbal & Stachiewicz (1966), who recast Morton’s result (2.7) into bulk- 
temperature form. 

In  Anderson’s version of the problem, the bulk temperature is rx, so Nu is 
proportional to the average value of the temperature difference 0 at  the wall. Hence 
the ratio of Nusselt numbers is given by 

(3.12) 

This agrees with the result (4.1) of Anderson (1970) that is quoted in the next section. 
We shall eventually invert these expressions to obtain the ‘direct ’ ratio Nu/Nu, 

that is normally coilsidered in the literature. However, we retain this ‘reciprocal ’ 
ratio throughout our analysis in the expectation that it is better behaved, because 
it ranges only between zero and one. 

4. Computer-extended series 
The results summarized above represent the present limit of hand computation. 

Beyond that, Anderson, using an ingenious ‘superscript summation convention ’ to 
organize the work on a computer (Reynolds & Potter 1967), calculated five terms 
with the effects of flow expansion included, and seven terms in the Boussinesq 
approximation adopted here. Thus he added two terms to the series (3.12) for the 
reciprocal ratio of Nusselt numbers : 

= 1--1.4742~ 10-7(&)2+1.6393x 10-13(ie)4-2.4749x 10-19(&)g+.... (4.1) 

We have- undertaken to extend this series solution considerably farther by 
computer, with the aim of analysing its coefficients and thereby extending its utility. 
We first rewrite the series (3.1) for B as 

Nu 

and similarly for $ and w. Here S is a scale factor to be chosen so as to avoid overflow 
or underflow. Results such as (3.12) suggest that i t  should be of the order of 4608. 
Then substituting into the governing equations (2.8) and equating like powers of E 
yields an equation for the nth term in the series for $: 

together with a similar equation for V’w,, and one for V2B, that involves a 
convolution summation because of the quadratic nonlinearity. 
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Inspection of (3.3) or (3.4), (3.7), and (3.9) indicates that  the functions 8, have thc 
form [ (n+z) l z l [ (7n+6) /21  

8,(r,$) = 2 C , , ~ r 2 k - ’ - ” c o s ( 2 j - 1 - p ) ~ .  (4.4) 
j=1 k = l  

Here the square brackets mean the greatest integer; and p is a ‘parity number’, 
equal to zero when n is odd and unity when n is even. We have analogous forms for 
V28,, +,, V4+,, w,, and V2w,. At the nth cycle of the solution, we substitute the 
expression (4.4) for 8, into the differential equation (4.3), replace products of sines 
and cosines by sums and differences, and then run through the double summation, 
assigning coefficients of like powers of r and sines of like argument to the matrix of 
coefficients in the expression for V4+,. Next, quadratures, and imposition of 
boundary conditions, yield the corresponding matrix for +, itself. We then increase 
n by one and carry out a similar process for V2B,+1, which involves a five-fold 
summation, and finally for 1 3 , ~ ~ .  After calculating the coefficient of the Nusselt 
number (if n is even), we start a new cycle. 

We have written a FORTRAN program of some 280 lines that carries out this iterative 
process for the boundary condition on temperature of either zero or infinite 
conductivity of the pipe. The program consists mostly of nested Do-loops; and the 
bulk of the computation is devoted to Do-loops nested five deep to evaluate the 
nonlinear right-hand side of the equation for V28,. Consequently, the computing time 
required is found to increase as the sixth power of the number of terms. 

We have eventually carried the solution to 31 terms in quadruple-precision 
arithmetic for both temperature conditions. Comparison with a double-precision 
runt  suggests that we have lost fewer than 15 significant figures a t  the end, so our 
results are correct to more than 16 figures. That is the number we have retained in 
all subsequent analysis (though of course wc quote here mostly truncated results). 

5.  Analysis of the coefficients 

Nusselt numbers, which has the form 
Only even powers of c contribute to the series (4.1) for the reciprocal ratio of 

m 2n 

Nu n=l 

Table 1 lists the first 16 coefficients a,, computed with the scale factor S = 1152, for 
the three cases outlined above. These are Anderson’s series (4.1) for circumferentially 
constant heat transfer with the Nusselt number based on the bulk fluid temperature, 
the reciprocal (3.10) of Morton’s series for circumferentially constant temperature 
with the Nusselt number based on mean fluid temperature, and the series (3.11) 
obtained by recasting Morton’s solution into bulk-temperature form. 

In all three cases, just as in the two related problems of the coiled and the rotating 
pipe, the signs of the coefficients alternate regularly, indicating that the nearest 
singularity lies on the negative axis of 8. Hence there is a complex-conjugate pair of 
singularities on the imaginary axis of E itself. For Anderson’s series, the coefficients 
are seen to decrease only slowly in magnitude, which suggests that the series 
converges for c slightly greater than 1152. In  Morton’s two versions, the radius of 

t We have since learned from Hideaki Takagi (unpublished communication) t h a t  a better way 
of estimating the loss of accuracy due t o  accumulated round-off error is t o  compare two runs of the 
highest available precision, carried out with different values of the scale factor S that  are not in the 
ratio of a power of 2.  
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Infinite conductivity, 
Zero conductivity, 

n bulk temperature mean temperature bulk temperature 
0 1.00000 oO000 00000 1 .0000 oooO0 00000 1 .0000 00000 00000 
1 
2 1.8045 56408 64384 x lo-' 2.3809 08442 141 19 x 3.0050 84964 49532 x 
3 -9.0396 05176 70404 x -4.6368 33322 83201 x -5.8891 26581 12572 x 
4 5.2086 79836 33005 x 1.0418 46910 56412 x 1.3276 03670 23338 x 
5 -3.2548 78205 26549x -2.5418 43436 66901 x -3.2455 95771 92275 x 
6 2.1448 38773 59787 x 
7 - 1.4673 44090 31272 x lo-' 
8 1.0322 43172 71277 x 4.8105 24495 22302 x 6.1614 26480 87002 x 
9 -7.419931000 7 1 9 4 6 ~  -1.35180512498275~ -1.73242288380411 x 

-4.8912 55288 27233 x lo-' - 1.6774 32105 65476 x lo-' -2.0839 63621 60567 x lo-' 

6.5435 11 168 97357 x lo-' 
- 1.7494 40926 79874 x lo-' 

8.3666 32151 14730 x lo-' 
-2.2390 63181 77177 x lo-' 

10 5.4260 01716 78194 x 3.8649 16597 19641 x lo-* 4.9554 27731 71237 x lo-* 
11 -4.0238 8001 1 61351 x - 1.4374 32840 01925 x lo-* 
12 3.0190 29525 22571 x 3.2877 83455 24059 x lo-@ 4.2183 89197 49774 x 10-8 
13 -2.2874 91410 54525 x lo-' -9.7411 88105 26416 x - 1.2501 78050 42213 x lo-' 
14 1.7478 51981 49147 x 2.9106 32407 85380 x lo-'' 3.7363 47256 62418 x lo-'' 
15 - 1.3452 7441 1 24656 x -8.7606 17556 76363 x lo-" - 1.1248 15406 27376 x 

TABLE 1. Coefficients a, of series (5.1) with S = 1152. 

- 1.1206 80136 61777 x lo-' 

0.8 

-5 
L l  

0.4 
a = :  

r 

0 

I I I I I I 

1 /n 

0 0.2 0.4 

FIQURE 1. Domb-Sykes plot for extended Anderson series (5.1). 

convergence appears to  be somewhat greater than that. Because all three solutions 
have very similar structure, we analyse only Anderson's in detail. 

We can estimate the radius of convergence, and a t  the same time the nature of the 
nearest singularity, by forming a Domb-Sykes plot - a graph of the ratios -a,Jan-l 
of successive coefficients versus l /n.  Figure 1 shows that the plot is quickly becoming 
straight as n increases. This indicates that the coefficients are approaching those of 
an algebraic singularity, a multiple of [Wz + ( E / A S ' ) ~ ] ~ ,  for which 
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The linear extrapolation shown in figure 1 corresponds to a = f ;  and a square root 
was the form of nearest singularity found also for the coiled and the rotating pipes. 
(For comparison, a simple pole would correspond to an exponent a = - 1 and hence 
to the dashed horizontal line.) 

The vertical intercept shown corresponds to a radius of convergence of (e/1152) = 

W = 1.08. Careful graphical extrapolation might yield one more significant figure 
than this; but the much greater accuracy inherent in our coefficients is revealed 
numerically by fitting higher-order polynomials in powers of 1 / n  through several 
points. The triangular array of all such extrapolations for the vertical intercept, 
which is our estimate for W P 2 ,  is easily constructed by forming a Neville table (Gaunt 
& Guttmann 1974). The last few entries are 

12..  .0.85136 86786 
13 ... 0.8513686716 0.85136 86710 
14 ... 0.85136 86711 0.85136 86711 0.85136 86711 
15 ... 0.85136 86718 0.85136 86720 0.85136 86721 0.85136 86722 

The last entry, for example, is the vertical intercept found by fitting a 14th-degree 
polynomial through all 15 ratios of coefficients. This is a remarkably well-behaved 
Neville table. 

The corresponding table for the exponent a shows values between 0.5000000 and 
0.5000007 in the fourth column from the end, and either 0.5000000 or 0.500000 1 in 
subsequent columns, so there is little doubt that  the singularity is precisely a square 
root. Assuming that to  be true, we can form a more accurate ‘biased’ Neville table 
for S2, which ends with 

12 ... 0.8513 68671 353 
13 ... 0.8513 68671 312 
14 ... 0.8513 68671 292 
15 ... 0.851368671292 0.851368671292 0.851368671293 0.851368671293 

Here we can confidently estimate that = 0.85136 86713, so that 92 = 1.0837 
80088 to a t  least ten significant figures. The series therefore converges for E less than 
E,, = 1248.514661. From his four terms, Anderson (1970) estimated the radius of 
convergence for his parameter X = ( ; E ) ~  as less than 5.0 x lo5, which we here refine to 
3.897.. . x lo5. 

We shall see that a t  this limit of convergence the effects of buoyancy have 
increased the Nusselt number by less than 4.3%. Experiments show that the 
practical range of laminar flow extends much further, with Nusselt number 
increasing by as much as a factor of four or five. We must therefore greatly extend 
the range of validity of our solution in order to make it useful. 

0.8513 68671 309 
0.8513 68671 290 0.8513 68671 289 

6. Improvement of convergence 
We have tried to extract the square-root singularity by forming the new series for 

[B2 + ( e / ~ S ) ~ ] - b  (Nu,/Nu) ; but then a new Domb-Sykes plot shows unmistakably an 
inverse square-root singularity a t  the same location. This means that the nearest 
singularity is not a multiplicative square root but an additive one, preceded by a 
constant, and therefore cannot be removed in this way. 

Instead, because a singularity on the negative axis of 2 is of no physical 
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n bll c, d* 
0 1 .0000 00000 1 .0000 00000 1 .0000 00000 
1 -5.7451 67109 x lo-' 9.2149 95573 x 5.7451 67110 x lo-' 
2 -3.2555 35253 x lo-' -8.2990 83853 x 3.5856 04705 x lo-' 
3 -2.2307 64569 x lo-' -2.0269 01444 x 2.6237 99492 x lo-' 
4 - 1.6794 36589 x lo-* -2.0676 76396 x lo-' 2.0750 70032 x lo-' 
5 - 1.3378 22868 x lo-* - 1.8940 18980 x 1.7189 30664 x lo-' 
6 - 1.1066 51235 x lo-' - 1.6933 24040 x lo-' 1.4685 70217 x lo-' 
7 -9.4046 5.5624 x - 1.5087 97888 x lW3 1.2827 00748 x lo-' 
8 -8.1560 56319 x lo-' - 1.3486 47477 x 1.1391 16783 x 
9 -7.1858 19330 x lo-' - 1.2118 47892 x lo-' 1.0247 89920 x lo-' 

10 -6.41 15 99001 x lo-' - 1.0951 96919 x 9.3156 19745 x 
11 -5.7803 78566 x -9.9535 69176 x 8.5405 90317 x 
12 -5.2565 33624 x -9.0940 64698 x 7.8859 46068 x 
13 -4.8152 71581 x lo-' -8.3493 01320x 7.325542066 x 
14 -4.4388 24350 x lo-' -7.6997 11326 x 6.8403 13248 x 
15 -4.1141 36847x los3 -7.129531645~ 6.416025399~ 

TABLE 2. Coefficients after Euler transformation, in series (6.2), (6.4), and (A 7) .  

significance, we map it away to infinity by applying an Euler transformation, 
recasting our series (5.1) in powers of the new perturbation parameter 

This gives 

m 

= 1 + 2 b,S" = 1-0.57456-0.03256S2-0.02231S3- 
NU n-1 

m 

nr- . = 1 + 2 b,S" = 1-0.57456-0.03256S2-0.02231S3- 
n-I LV'U 

We list the new coefficients b, in table 2. They have fixed signs after the first, which 
means that the nearest singularity now lies on the positive axis. We anticipate that 
it lies a t  6 = 1, corresponding to  a singularity a t  E = 00. This is confirmed by the new 
Domb-Sykes plot of figure 2, and more precisely by a Neville table, whose later 
entries are unity to a t  least five significant figures. Thus our transformed series 
converges for all finite E .  

At the limit of convergence of the original series, S is only and our new series (6.2) 
yields Nu,/Nu = 0.9585755 or Nu/Nu, = 1.0432146, correct to this many figures. At 
three times that value of E ,  however, where the lYusselt number has not yet doubled, 
our scries with S = & converges so slowly that our 16 terms yield only two-figure 
accuracy. Our solution needs to be further improved. 

The key is clearly to analyse the singularity a t  S = 1, t u  find how the solution is 
behaving for large e. The Domb-Sykes plot is again becoming straight, indicating a 
singularity of the form (1 - &)F. If the reciprocal ratio Nu,/Nu is to vanish at large E ,  

that must also be the leading term as S+ 1 (that is, there is no additive constant 
preceding it). Then the direct ratio Nu/Nu, will be singular like (1  -&)-a. In terms of 
the original parameter E this implies, according to  (6.1), the asymptotic behaviour 

- - const. x s-28 or - Nu - const. x € 2 ~  as e-+ oo. 
Nu Nu0 
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1 I I 
0 0.04 0.08 0.12 

1 I n  

FIGURE 2. Detail of Domb-Sykes plot for Euler-transformed series (6.2) for Nu,/Nu and its 
reciprocal (A 7). 

We have now, as in the companion problems of the coiled and the rotating pipe, 
reached a crucial and delicate stage in our analysis. The Domb-Sykes plot of figure 
2 shows that the important exponent p is positive (as it should be if Nu is to grow 
with E )  but very small, probably less than &. We have devoted considerable effort to  
estimating it reliably. In the Appendix we describe the three techniques that have 
yielded the most conclusive estimates. These involve examining Pad6 approximants 
to the logarithmic derivative of the original series (5.1), calculating the expansion for 
the logarithmic derivative of the Euler-transformed series (6.2), and comparing the 
direct and reciprocal series. These indicate that the exponent /3 is probably 0.067 to 
two significant figures. Experience leads us to expect a simple rational fraction, and 
we therefore conclude that /3 = &. 

The leading singularity can then be extracted multiplicatively, which transforms 
our reciprocal series (6.2) to 

(6.4) 

Table 2 lists the new coefficients c,. We could now analyse this new series. A 
Domb-Sykes plot clearly indicates a confluent algebraic singularity a t  6 = 1, so that 
the bracket in (6.4) represents a function of the form (1 - k )  + k(  1 - S ) Y  + .. , . Here the 
secondary exponent y is positive, and a Neville table suggests that it may be $. We 
have not pursued these details, however, because we see that our result is already 
sufficiently accurate for practical purposes. 

The bracketted series in (6.4) is very close to unity in the range 0 < 8 < 1 of 
physical interest. It rises slightly and then falls to 0.97 at 6 = 1. Accepting an error 



Extended Stokes series : laminar $ow through a heated horizontal pipe 301 

2.2 

, 1.8 

1.4 

1 .o 

Shannon & Depew 
(1968), water 

0 Mori et al. (1966). air 

+ Newell & Bergles (1970), 

p=' 0 
10 0 

I 0 
,' 

numerical 20 

Equation (6.6) + - 

. .  /+. - 

Pr Ra Re 

FIGURE 3. Comparison of present theory with experiment and numerical solution. 

of not more than a few per cent, we may set it equal to unity. Then (6.4) gives for 
the direct ratio 

Nu 

The last result has been expressed in terms of our original product of Prandtl, 
Rayleigh, and Reynolds numbers, using our radius of convergence truncated to four 
figures. 

For large E ,  the bracket in (6.4) approaches 0.97, which yields the asymptotic result 

Nu 
__ N 0.97(e/e0)h = 0.375(PrRaRe)k as PrRaRe+ CQ (6.6) 
NU0 

and this gives practically the same result as (6.5) for e = PrRaRe greater than lo3. 

7. Comparison with previous results 
The heat transfer has been measured in horizontal pipes using water, air, and 

ethylene glycol. Different experimenters (followed by theoreticians) have plotted the 
Nusselt number versus a variety of dimensionless parameters, including Ra,  Re, 
RaRe, Gr, and GrPr ,  where the Grashof number Gr is (aside from possible factors of 2 
in the definitions) equal to RaRelNu. Anderson (1970) has criticized the last choice 
because both Gr and Nu contain the unknown average wall temperature. He 
emphasizes that the proper independent parameter is GrNu Pr, which is equivalent 
to  our 8 = Pr Ra Re. 

Anderson has converted to that parameter the measurements of Shannon & Depew 
(1968) in water, and the finite-difference calculations of Newell & Bergles (1970). Our 
figure 3, borrowed from Anderson, shows those results plotted versus our e (rather 
than his Xi = e / 2 ) .  We have added the measurements in air that Mori et al. (1966) 
originally plotted versus Ra Re. 
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Figure 3 shows that our result (6.6) agrees very well with the numerical solution 
and with t8he experiments for both air and water. Indeed, had we not been able to find 
the crucial exponent j? from our series analysis, we could have estimated i t  from the 
experiments, using only our knowledge of the original radius of convergence E,,. Thus 
figure 3 shows dotted curves for two alternate exponents, &and h; and it is clear that 
the proper value must lie roughly halfway between them, as ours does. 

Two different boundary-layer analyses have been proposed for the heated pipe. 
(Neither is a complete theory, however, because each is based on an assumption, 
suggested by experimental observations, about the structure of the flow in the core.) 
For Prandtl number not far away from unity, Mori & Futagami (1967) predict that 
the Nusselt number grows eventually as 

Nu 
- - C(Pr)  (Ra Re):. 
Nu0 

Their equations (48) and (56) show that the factor C(Pr)  is a complicated function of 
Prandtl number. For infinite Prandtl number, Siegwarth et al. (1969) predict that 

Nu - 0.471 (GrPr);,  (7.2) 

and Cheng et al. (1972) and Woods & Morris (1980) point out that this can be 
converted to  

N u  
__ - 0.190 (Pr Ra Re)g. 
Nu, 

(7.3) 

However, both these results correspond to a value of & for our exponent p ;  and that 
value was seen to be too large in figure 3. We conclude that the boundary-layer 
analyses are not correct. 

8. Discussion 
It is reassuring to find that our solution agrees with both experiment and 

numerical results over the entire range of laminar flow. Particularly gratifying is our 
ability to  extract from the perturbation series for slight heating the asymptotic 
behaviour for extreme heating. It seems that the situation is more straightforward 
here than for the coiled pipe, where complete resolution of the paradox apparently 
awaits deeper understanding. 

As Trefethen (1957) observed, the flow through a heated horizontal pipe is 
qualitatively similar in a number of respects to that through a coiled pipe or a 
rotating pipe. From a physical point of view, body forces produce in each case a 
double-spiral secondary motion. Transition to  turbulence is thereby delayed to 
higher Reynolds numbers (for reasons that are by no means clear). From a 
mathematical point of view, the number of dimensionless parameters can in all three 
problems be reduced, to a good approximation, to a single combination: the Dean 
number for the coiled pipe, Mansour’s product of axial and rotational Reynolds 
numbers for the rotating pipe, and Anderson’s triple product PrRaRe for the heated 
pipe. Expansion in powers of that single combination shows, in each case, 
convergence limited by a conjugate pair of square-root singularities on the imaginary 
axis. A global result was examined in each case, whose expansion involves only even 
powers, and is therefore limited hy a square-root singularity on the negative 
axis. 
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Mapping that unphysical singularity away reveals a very weak singularity a t  
infinity : a &-power for the coiled pipe, & for the rotating pipe, and & for our heated 
pipe. It is of no concern that these delicate estimates are different in each of the three 
cases, for the analogy is only qualitative. Each problem is quantitatively distinct ; for 
example, our problem of the heated pipe involves a temperature equation that has 
no counterpart in the other two problems. 

Another common feature is in each case an asymptotic result that contradicts 
existing boundary-layer analyses. For the loosely coiled pipe the friction grows 
eventually as the ;-power of the ‘practical ’ Dean number based on the actual mean 
flow speed down the pipe, rather than the :-power predicted by four different 
approximate boundary-layer models. For the rotating pipe, the friction grows as the 
;-power, rather than the $power of two different boundary-layer approximations. 
And for the heated pipe we have found the heat transfer increasing as the &-power, 
not the $-power of the boundary-layer analyses of Mori & Futagami (1967) and 
Siegwarth et al. (1969). 

The new experiments of Ramshankar & Sreenivasan seem to have substantiated 
our earlier conclusion (Van Dyke 1978) that the boundary-layer approximations for 
the coiled pipe are all not altogether correct. And the comparison shown in figure 3 
convinces us that the boundary-layer results are also wrong for the heated pipe. 
Apparently we theoreticians do not yet fully understand how to treat a recirculating 
boundary layer - in particular, one that encloses a core of two bilaterally symmetric 
cells. Models have been invoked that assume collision of the layers from the two sides 
of the cross-section and subsequent formation of a re-entrant jet, or separation of the 
two layers before they meet, or layers that vanish just as they meet; but none of 
these has given correct results. We may hope that detailed local examination of 
computer-extended series solutions might elucidate the structure of recirculating 
boundary layers. That would undoubtedly require us to analyse local quantities, 
whereas we have so far considered only simpler global results. 

Our approximation of high Prandtl number has proven not to be very restrictive. 
However, it would not be acceptable for a liquid metal like mercury, with Pr = 0.02. 
In that case the simplest approach would be to assume very small Prandtl number, 
corresponding to retention of only the first correction in Morton’s approximation 
(2.7) rather than the third, because that would again involve a series in powers of 
only one parameter, RaRe.  The more ambitious approach of treating arbitrary 
Prandtl number would require the analysis of double power series - a task for which 
we are not yet well equipped. 

There are other fluid motions analogous to the three compared here. Thus Morris 
(1965) has calculated by hand the second-order solution in powers of rotational 
Rayleigh number for laminar flow through a heated vertical tube rotating about a 
parallel axis. It would be interesting to extend that series by computer, and compare 
it with the numerical and experimental results reported by Woods & Morris (1974, 
1980). 

We have discussed in detail only the first set of coefficients in table 1, with the 
boundary condition of zero conductivity and a Nusselt number referred to the bulk 
temperature. We now summarize our results for the other two sets, with infinite 
conductivity. Both show once more a square-root singularity on the negative axis of 
2, but a common radius of convergence of eo = 1996.356835 rather than 1248.5.. . . 
The singularity a t  infinity has again an exponent of T; for Morton’s Nusselt number 
based on mean temperature ; but that  is replaced by & when Morton’s result is recast 
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into bulk-temperature form. Thus the counterparts of our approximation (6.5) and 
its asymptotic form (6.6) are 

PrRaRe -- Nu - [ 1 + ( )I” - 0.3631 (PrRa Re)& 
NU0 1996 

for Morton’s version, and 

PrRaRe 
= [ 1 + ( 1996 ) ] - 0.2965 (Pr Ra Re)& 

Nu0 

when referred to bulk temperature. The latter of these rises significantly faster than 
its zero-conductivity counterpart (6.6), but the difference is not great. 

Bifurcation from a two-cell to a four-cell flow has been found numerically by 
Eandakumar, Masliyah & Law (1985) when Nu/Nu, has risen to about 2.4 
(corresponding to the right side of our figure 3). Unfortunately the method of 
computer-extended series does not detect such a bifurcation, because i t  describes 
only the basic mode, which becomes unstable but continues analytically through the 
bifurcation point. It is conceivable that other solutions are described by our series on 
other Eliemann sheets in the complex plane of e,  but we have no techniques yet for 
performing such an ambitious numerical analytic continuation. 

This work was supported by the National Science Foundation under Grants ENG- 
7824412 and CTS-8821460. The author is indebted to Cliff Lin for the initial 
programming, and to A. J. Guttmann, William Reynolds, and Edward Sweeny for 
discussion and advice. 

Appendix. The exponent at infinity 
We have applied to our 16-term series a number of standard techniques (Gaunt & 

Guttmann 1974) in order to estimate the exponent of the singularity a t  infinity. We 
describe the three that yield the most conclusive results. 

First, we examine the original series (5.1) using Pad6 approximants. Recall that 
the [M/W Pad6 approximant to a power series is the rational fraction 

A,+Al€+A,€2+  ... + A M P  
= 1+B1e+B2e2+ ... +B,sN 

that, when expanded for small E ,  matches the given series through eM+,. As the 
degrees M and N of the numerator and denominator both increase, Pad6 
approximants provide analytic continuation far outside the original circle of 
convergence. 

According to (6.3), the ratio Nu,/Nu behaves like a multiple of e-2fl as e tends to 
infinity. I ts  logarithm therefore grows like -2Plne, and the derivative with respect 
to E of the logarithm decays like -2p /s .  We therefore calculate from (5.1) the series 
for the logarithmic derivative, and then form the successive Pad6 approximants 
[N/(N+ l)] with denominator of degree one greater than the numerator. As e+ co 
these decay like ( A N / B N + l ) / e  in the notation of (A l ) ,  so that L I , / B ~ + ~  provides an 
estimate of -2p. This gives the successive values 

p =  0.0710, 0.0772, 0.0778, 0.0778, 0.0804, 0.0682, 0.0718. ( A 2 )  
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It is characteristic of Pad6 approximants, as is the case here, that they do not vary 
smoothly even when applied to a smooth series. We can perhaps only conclude that 
/3 is 0.07 to one significant figure. 

Second, we turn to the series (6.2) after the Euler transformation. If Nu,/Nu is a 
multiple of (1 - 6 ) p ,  its logarithmic derivative is 

d Nu 
-In> = -P = - - p ( i + a + ~ +  ... + a n +  ...I 
d6 NU 1-6  

Thus the coefficients in the series for the logarithmic derivative provide the 
successive estimates 

,B = 0.05745, 0.06841, 0.07272, 0.07486, 0.07605, 0.07675, 
0.07716, 0.07740, 0.07754, 0.07760, 0.07761, 0.07759, 
0.07755, 0.07749, 0.07742 (A 4) 

and these should approach the correct value. The last four values are decreasing 
smoothly, after having reached a maximum at the eleventh term. We can therefore 
extrapolate by forming a Neville table, which ends with 

12 ... 0.07151 
13 ... 0.07104 0.07101 
14.. .0.07067 0.07060 0.07057 
15. .. 0.07035 0.07027 0.07022 0.07019 

This table is again remarkably smooth, and the trend continually downward, 
suggesting that p is less than 0.070. 

Experience shows that the values along the top diagonal of such a table can be 
extrapolated further. We apply to successive triads the nonlinear transformation 

which forms the exact sum S from any three successive partial sums S n  of a geometric 
sequence (Shanks 1955). It gives here the estimates 

p = 0.08280, 0.08135, 0.08694, 0.06436, 0.06883, 0.06912, 0.06894, 
0.06871, 0.06840, 0.06816, 0.06795, 0.06775, 0.06758. (A 6) 

From this we can perhaps conclude that /3 is 0.067 or 0.068 to two significant figures. 
Third, we reconsider the Domb-Sykes plot for the Euler-transformed series. 

Although we have found it convenient to analyse the series for the reciprocal ratio 
Nuo/Nu, it is helpful to examine also that for the direct ratio, which is found to be 

co Nu 
-= 1 +  C dnSn = 1+0.05745~+0.03586S2+0.02624~3- .... (A 7) 
NU0 n-1 

We list the new coefficients dn in table 2, and show in figure 2 the Domb-Sykes plot 
for this as well as the reciprocal series. 

At first sight, figure 2 suggests a value of about p = 0.1 for both the direct and the 
reciprocal series. However, for large n the value for the direct series, at least, seems 
to be tending to somewhat smaller negative values. These graphical estimates are 
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refined by forming Neville tables for the exponent p. The end of a table biased to unit 
radius of convergence is, for the reciprocal series, 

11 ... 0.1191 
12. .. 0.1 159 0.1 156 
13 ... 0.1131 0.1126 0.1124 
14 ... 0.1107 0.1101 0.1097 0.1094 
15 ... 0.1086 0.1079 0.1073 0.1070 0.1068 

and for the direct series 

11 . . .0.0236 
12.. .0.0252 0.0253 
13.. .0.0267 0.0270 0.0271 
14 ... 0.0281 0.0285 0.0287 0.0288 
15 ... 0.0294 0.0298 0.0302 0.0304 0.0305. 

These two tables must have a common limit; but they are approaching it very 
slowly, so that we can only conclude that p lies between 0.03 and 0.10. However, we 
are free to modify the Domb-Sykes plot by renumbering the coefficients -for 
example, by setting a, = A,,,. This shifts the points in figure 2 considerably, so that 
those for the direct series lie practically on the line for ,4 = 0. However, the points for 
the reciprocal series are then shifted by an almost equal amount. This suggests that 
a better estimate for /3 is given by the average of the values for the direct and the 
reciprocal series; and this idea is confirmed both by analysis and by examination of 
model functions. It is also equivalent to applying the ' critical-point renormalization ' 
of Hunter & Baker (1973) to the direct and reciprocal series. Averaging the two 
tables above gives 

11 . . .0.07136 
12.. .0.07053 0.07046 
13.. .0.06990 0.06979 0.06973 
14 ... 0.06941 0.06927 0.06919 0.06914 
15 ... 0.06901 0.06886 0.06876 0.06869 0.06866. 

We extrapolate further by applying the nonlinear transformation (A 5) to  triads 
along the top diagonal. This gives the estimates 

p = 0.09075, 0.09394, 0.09173, 0.08087, 0.12814, 0.07094, 0.06788, 

These values suggest that /3 is 0.066 or 0.067 to two figures. 

0.06791, 0.06737, 0.06703, 0.06677, 0.06658, 0.06646 (A 8) 
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